

Belgian Road Research Centre Together for sustainable roads

"Pervious (lean) concrete for sustainable road pavements: first results of the Belgian Be-Drain project"

EUPAVE Workshop on Pervious Concrete Pavements

Elia Boonen (Belgian Road Research Centre)

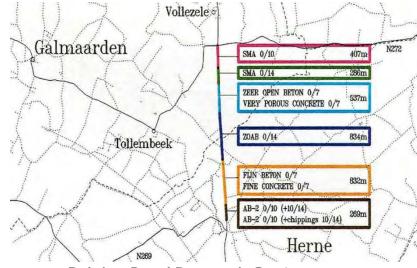
20th October 2021

General context

Climate change & integral, sustainable water

https://www.operatieperforatie.be/

- Pervious concrete as one possible measure (SUDS):
 - Discontinuous grading (no or limited sand fraction)
 - 15-25% void content
 - Water permeability of 10⁻⁴ 10⁻² m/s
 - Compressive strength: 10-25 MPa

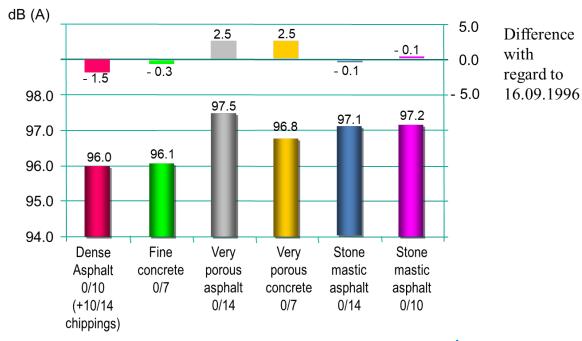


EUPAVE Workshop "Pervious Concrete Pavements" - 20/10/20212

History: past research on pervious concrete

Open, porous concrete as noise reducing top layer

- Pervious concrete composition with polymers for increased strength and freeze-thaw durability
- 1996: Test sections of low noise pavements at N255 in Herne
 - Two-lift CRCP with different top layers
 - One in porous concrete 0/7 mm (+ polymers)



Open, porous concrete as noise reducing top layer

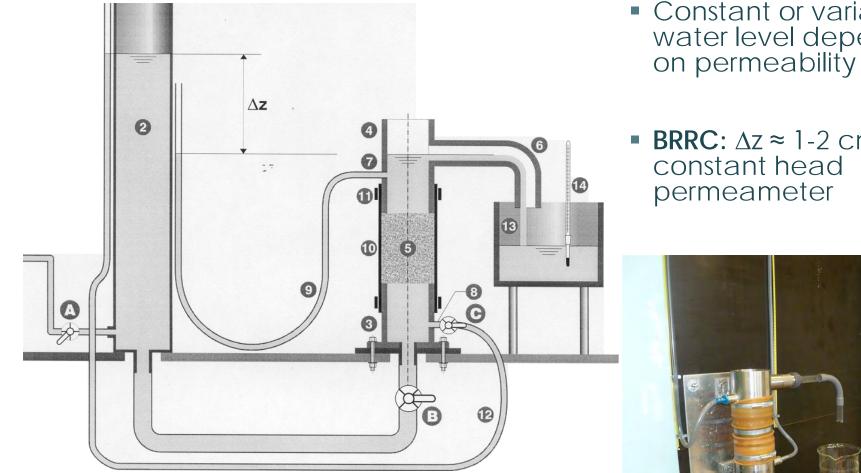
- Conclusions from test sections in Herne (1996):
 - Very porous concrete gave best initial results for noise reduction
 - However, similar problems as porous asphalt:
 - Clogging of the voids;
 - Loosing aggregates on the surface.

History: pervious lean concrete as base layer for (water permeable) pavings

- Research by University of Louvain-la-Neuve (UCL), ~2000
- Example of composition in standard tender specifications:

coarse aggregates 6.3/20 mm: 1,130 kg fine aggregates 2/6.3 mm: 565 kg cement: minimum 200 kg/m³ water: ± 100 l/m³

Pervious lean concrete: current specifications


- Compressive strength after 90 days, determined on cores:
 - individual value Wi ≥ 10,0 Mpa
 - average value Wm ≥ 13,0 MPa
- Water permeability on cores of 100 cm² surface area and 10 cm high:
 - ki ≥ ki,min = 4*10⁻⁴ m/s
- "Effective" porosity on same type of cores (Wallonia):

• $P_{m,min} = 8,0\%$

Experimental setup to determine the water permeability of porous lean concrete

 Constant or variable water level depending

• **BRRC**: $\Delta z \approx 1-2$ cm,

7

Current context in Belgium (2018-...)

 Increased interest & demand for water permeable pavements among which cast-in-place pervious concrete (cf. ISCR 2018-Berlin + Belgian road sector)

 Demand for representative compaction method in the lab for porous lean concrete (cf. certified mixture for base layers)

Hydromedia @ Holcim

For example: Porous concrete for road pavements

• Promising application for lightly trafficked areas and public spaces

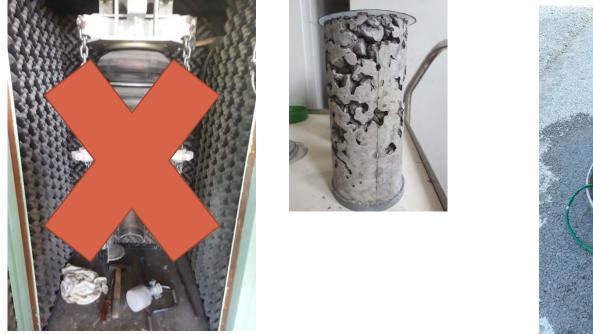
Batezini et al. (Brasil)

Vogel et al. (Germany)

EUPAVE Workshop "Pervious Concrete Pavements" - 20/10/2021

Recent testing on pervious lean concrete

Preliminary testing with pilot sections in collaboration with AC Materials in Puurs, Antwerp (August 2018):



• 2 different methods of laboratory compaction tested

Belgian Road Research Centre

Conclusions – test tracks AC Materials

Vibro-compression ≠ representative compaction method

Double-ring infiltrometer to test in situ permeability?

Belgian Road Research Centre

Recent testing on pervious "road concrete"

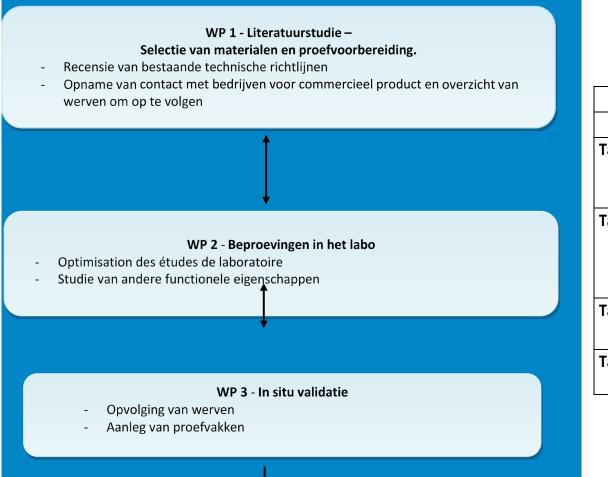
 New test tracks with Holcim executed at BRRC premises in Sterrebeek (August 2019)

Promising experience with several lab testing methods

Start of prenormative research Be-Drain (1/11/2020-1/11/2022)

- "Béton (maigre) drainant pour revêtements routiers durables"
- Problem statement:
 - No general technical guidelines for concrete composition and/or performance requirements for application of pervious concrete as surface course
 - Lack of representative test/compaction method for pervious lean concrete as base layer in the preliminary lab study (certification)

Be-Drain: porous (lean) concrete for sustainable road pavements


- Belgian prenormative research:
 - 1. Technical guidelines, performance requirements and adapted testing methods for pervious (draining) concrete mixes as a function of:
 - Application (top or base layer)
 - In situ compaction method
 - Functional requirements (comfort, freeze-thaw resistance, ravelling, etc.)
 - 2. Recommendations for Belgian standard tender specifications and possible normalization

Be-Drain: research plan

WP	Sous-tâches	Trimestres							
		1	2	3	4	5	6	7	8
Tâche 1	1.1 Literatuurstudie								
	1.2 Selectie van materialen en								
	proefvoorbereiding								
Tâche 2	2.1 Optimisation des études de								
	laboratoire								
	2.2 Studie van andere								
	functionele eigenschappen								
Tâche 3	3.1 Opvolging van werven								
	3.2 Aanleg van proefvakken								
Tâche 4	Synthese en valorisatie van de resultaten								

Timing : 1/11/2020 - 31/10/2022

WP 4 - Synthese en valorisatie van de resultaten

Literature review

• Examples from Germany:

			cke D 8	Tragschicht DBT 16, 22, 32		
		mit PM	ohne PM	mit PM	ohne PM	
	-	[kg/m3]	[kg/m ³]	[kg/m ³]	[kg/m ³]	
Gesteinskörnung	fGK 0/2 ¹⁾ fGK 0/1 oder 0/2	60-100	-		- 150 - 180 ²⁾	
	gGK 5/8 gGK 8/16, 8/22 oder 8/32	-	1.500-1.600	- 1.500-1.600	-	
Zementfestigkeits- klasse	32,5 R/ 42,5 N	300-350	300-350	150-300 ³⁾	150-3003)	
Wasser	Frischwasser	40-755)	85-115	52-735)	60-903	
w/z-Wert (eq)	-	0,25-0,30	0,28-0,33	0,30-0,40	0,30-0,40	
Polymer (PM) (z. B. Polymer- dispersion)	15-20 M% v.Z. 10-15 M% v.Z.	-		- 15-34	-	
Zusatzmittel	FM oder BV	1-3	-	-	-	
Kunststofffasern (z. B. PAN, PVA)	Länge 6-12 mm	1-2	-	-	-	
Konsistenz (Einbau)	Verdich- tungsmaß	1,30-1,344 (steif, C1)	1,30-1,34 ⁴⁾ (steif, C1)	1,30-1,45 ⁴⁾ (steif, C1)	1,30-1,454 (steif, C1)	
Druckfestigkeit	Würfel 150 KL oder Zylinder mit Schlankheit h/d = 1	20–30 MPa	20-30 MPa	10–20 MPa	10–20 MPa	

⁴⁹ Die Einbaukonsistenz ist auf das Einbauverfahren abzustimmen.
⁵⁰ Der Wasseranteil der PM ist beim Zugabewasser berücksichtigt.

Selection of materials & concrete compositions

Base materials:

Limestone aggregates: 4/6 – 6/10 – 10/14 – 14/20 mm (Holcim)

480 kg kalksteen 10/14

480 kg kalksteen 6/10

480 kg kalksteen 4/6

100 kg water

250 kg CEM III/A 42,5 N LA

- CEM III/A 42,5 N LA (CBR-Heidelberg)
- Sand?
- Polymeric admixtures (Sika)
- Concrete compositions:
 - Compo 1 = béton 4/14 (CS)
 - Compo 2 = BMD 4/20
 - Compo 4 = béton 4/10 (CS)
 - Commercial mixes (construction sites)

Belgian Road Research Centre

960 kg

6/20

320 kg kalksteen 14/20

320 kg kalksteen 10/14

320 kg kalksteen 6/10

480 kg kalksteen 4/6

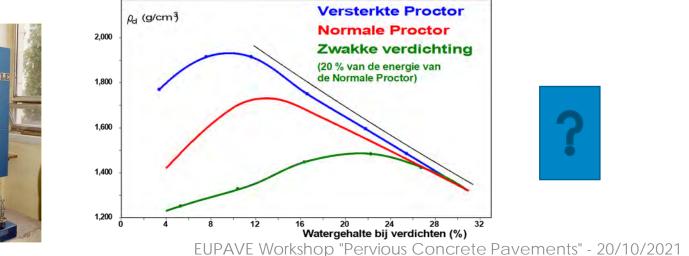
200 kg CEM III/A

100 kg water

Testing in the laboratory

- 2.1: Optimisation of lab testing methods
 - \Rightarrow Representative compaction method
 - \Rightarrow Influence of different parameters:
 - Cement content
 - W/C ratio
 - Admixtures
 - (Colour pigments)
- 2.2 Study of other functional properties

VS.


Lab testing – some first results

Most promising compaction method so far =

« Proctor allégé » - « Proctor light »: 2 layers - 2,5 kg - Hc 305mm; 56 blows/layer, with:

- Coring after 7 days (D 113 mm, H = 100 mm) 3 échantillons par mélange + rectification
- Common curing protocol BRRC-CRIC (under water after 3 days)
- Testing of permeability k + effective porosity [CME 52.20] and Rc28 [NBN EN 12390-3]

 Versterkte Proctor

Lab results - influence of compaction energy

Townstand	t Characteristics of test Symbol Dimension		Discussion	Proctor mould		
Type of test	Characteristics of test	Symbol	Dimension	Α	В	С
1	Mass of rammer	m _R	kg	2,5	2,5	15,0
	Diameter of rammer	d_2	mm	50	50	125,0
Proctor test	Height of fall	h ₂	mm	305	305	600
	Number of layers	11.25	1.46/141	3	3	3
	Number of blows per layer	E.e.	1.118-1271	25	3 56	22
	Mass of rammer	m _R	kg	4,5	4,5	15,0
a deserved	Diameter of rammer	d_2	mm	50	50	125,0
Modified Proctor test	Height of fall	h_2	mm	457	457	600
	Number of layers	-		5	5	3
	Number of blows per layer	18		25	56	98

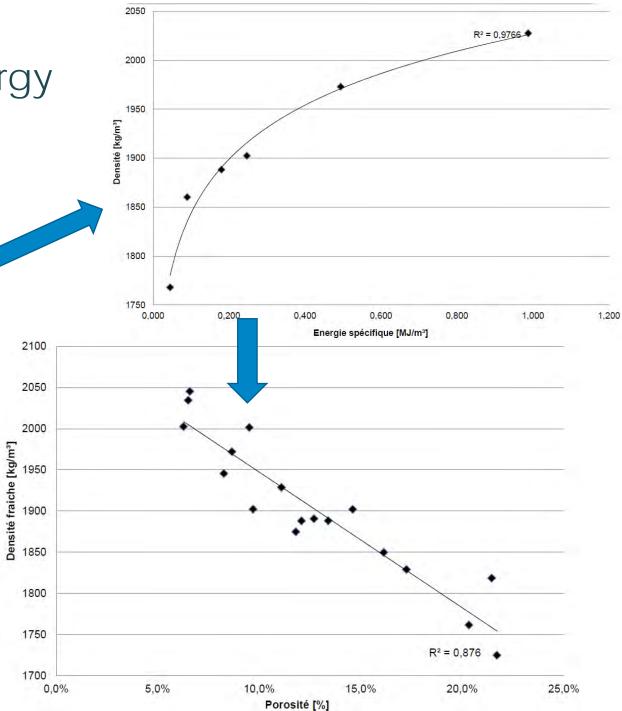
Abstract from EN 13286-2

Table 1 — Dimensions of new cylindrical test moulds

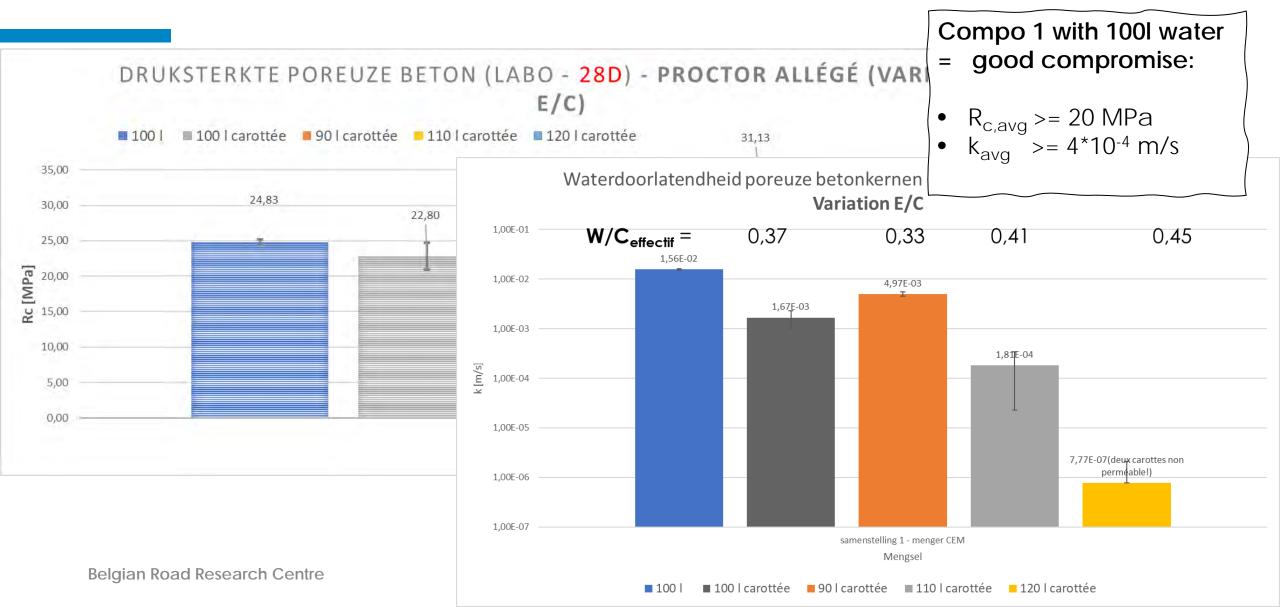
		Diamatan (llainht (Thickness			
Proc	tor mould:	Diameter d ₁ mm	Height h ₁ mm	Wall w mm	Base plate <i>t</i> mm		
	А	100,0 ± 1,0	120,0 ± 1,0	$7,5\pm0,5$	11,0 ± 0,5		
	В	150,0 ± 1,0	120,0 ± 1,0	9,0 ± 0,5	14,0 ± 0,5		
	С	250,0 ± 1,0	200,0 ± 1,0	14,0 ± 0,5	$20,0\pm0,5$		
NOTE	Annex A gives	details of other cylindri	cal test moulds which i	may be in current use.			

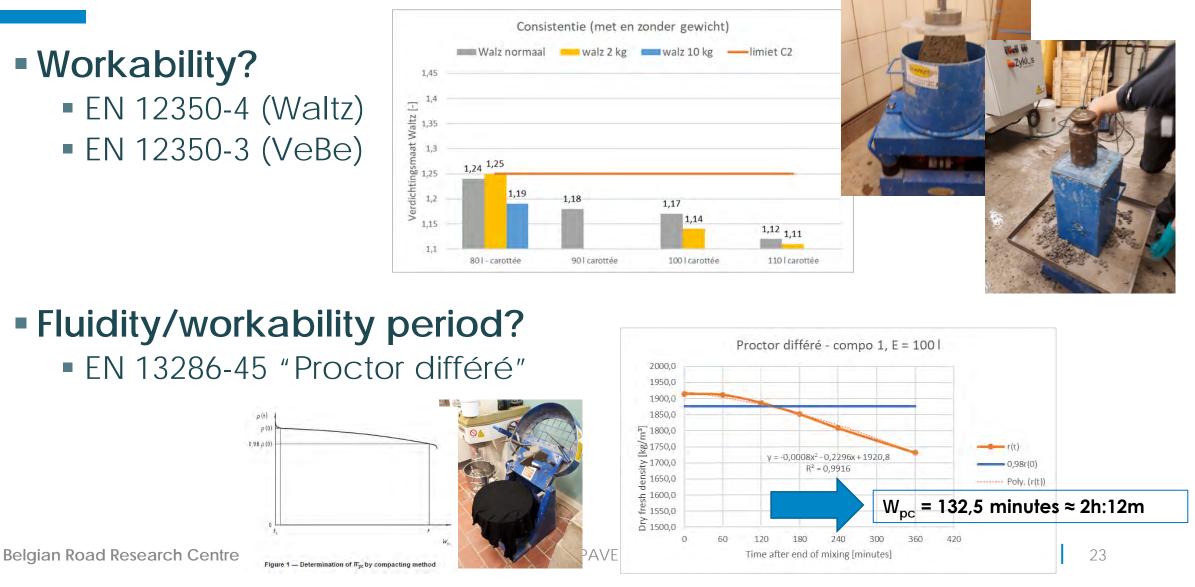
Specific energy =

volume of mould


mass of rammer × height of fall × number of blows per layer × number of layers x gravity

Influence of compaction energy


Combinaision	E-19-272-A	E-19-272-B	E-19-273-C	E-19-273-F	E-19-280-G	E-19-281-H
Fabrication	18/06/2019	18/06/2019	1/08/2019	1/08/2019	1/08/2019	1/08/2019
Eprouvettes	6	6	3	3	3	3
Dame [kg]	2,488	2,488	2,488	4,50	4,50	4,50
Hauteur chute [mm]	305,0	305,0	305,0	457,0	457,0	457,0
Nbr coups par couche	28,0	14,0	56,0	56,0	28,0	14,0
Nbr de couches	1,	1,	1,	2,	2,	2,
Pesanteur [N/kg]	9,810	9,810	9,810	9,810	9,810	9,810
Diamètre moule [mm]	152,50	152,50	152,50	152,0	152,0	152,0
Hauteur moule [mm]	126,50	126,50	126,50	126,0	126,0	126,0
Volume [mm ³]	2310575	2310575	2310575	2286376	2286376	2286376
Energie spécifique [MJ/m ³]	0,090	0,045	0,180	0,988	0,494	0,247
L 1,100 1,000 0,900 0,800 0,700 0,600 0,500 0,400 0,300		•	G			↓ F
0,100	◆н ◆в	•	A			◆ c
0,000 0 10	20) Nomb	30 re de coups	40	50	60

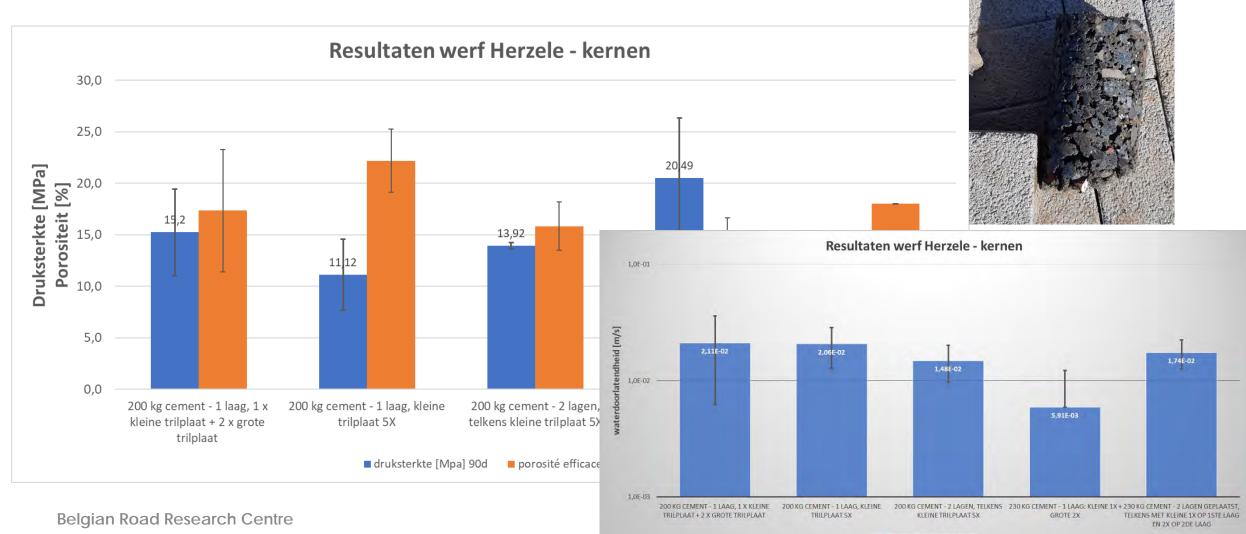


Belgian Road Research Centre

Lab results - Rc versus permeability

Other testing in the lab/on site

In situ validation – exemple of site in Herzele


- Different compaction methods experimented by the contractor + 2 different concrete mixes (C = 200 and 230 kg/m³)
- Samples taken on site by BRRC (PA + OPM)...

... and comparison with cores from the pavement

waterdoorlatendheid [m/s]

Functional properties in the lab

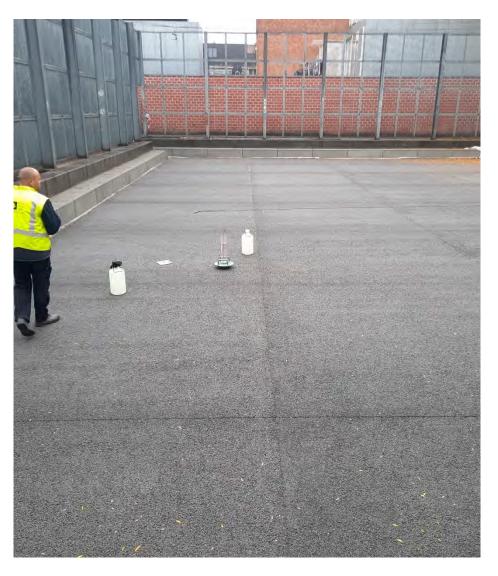
E.g. Adapted freeze-thaw testing method

	Surface		Sn						
	d'essai A	-	[kg/m²]						
N° échantillon	mm²	7 cycles	14 cycles	28 cycles	42 cycles	56 cycles			
E-20-924/1	10400	0.06	0.34	0.56	1.10	2.08			
E-20-924/2	10400	0.02	0.16	0.42	0.68	1.16			
E-20-924/3	10400	0.02	0.10	0.56	1.00	2.08			

Tableau 5 : Résultats des gel-dégels sur les éprouvettes E-20-924.

Tableau 6 : Résultats des gel-dégels sur les éprouvettes E-20-927.

	Surface d'essai A	Sn [kg/m²]						
N° échantillon	mm²	7 cycles	14 cycles	28 cycles	42 cycles	56 cycles		
E-20-927/1	10400	0.00	0.10	0.42	1.04	1.56		
E-20-927/2	10400	0.00	0.02	0.04	0.04	0.06		
E-20-927/3	10400	0.00	0.02	0.12	0.16	0.26		



Conclusions & perspectives

Pervious (lean) concrete as promising solution for sustainable water management in urban areas

More experience & improved technical guidelines in Belgium under development: from base layer to surface course

Current focus on functional properties of pervious concrete pavement

Belgian Road Research Centre Together for sustainable roads

Elia Boonen, M.Sc. Eng., PhD

Belgian Road Research Centre – Deputy Head of Division Concrete Roads – Geotechnics – Drainage and Infiltration Technics Division

- T +32 2 766 03 41 +32 477 94 38 21
- E e.boonen@brrc.be
- W www.brrc.be