

Design and construction of industrial pavements – the comparison with road pavements

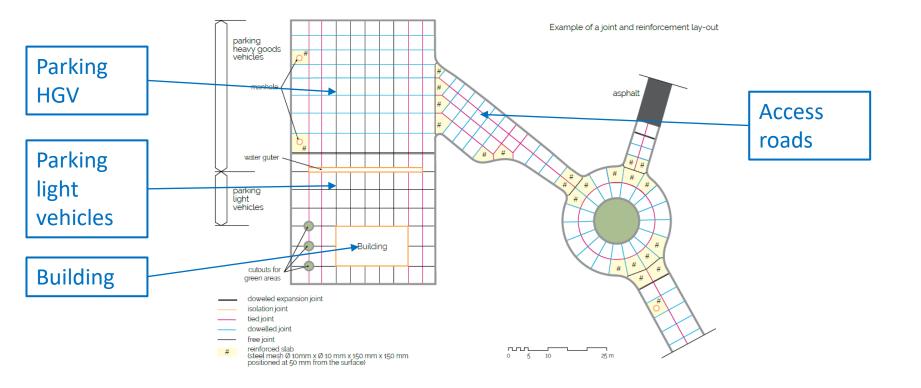
Luc Rens Consulting Engineer, FEBELCEM Managing Director, EUPAVE

Outdoor industrial and heavy-duty concrete pavements (OIHD-CP)

- Different types and applications
 - Commercial zones
 - Access roads
 - Loading and unloading areas (docks)
 - Storage areas
 - Parking areas

Outdoor industrial and heavy-duty concrete pavements (OIHD-CP)

- Different types and applications
 - Heavy-duty pavements
 - Port areas
 - Airports (Runway Taxiway Apron)



Outdoor industrial and heavy-duty concrete pavements (OIHD-CP)

• Or a combination of different functions

• Exposure conditions

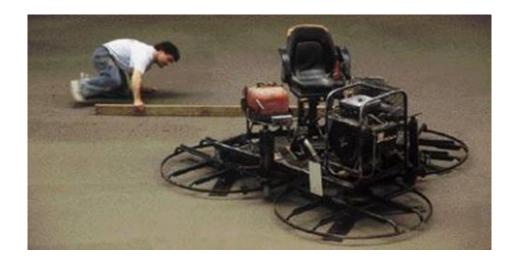
- \circ Outdoor weather
 - greater daily and annual temperature change
 - rain, snow, frost, freeze-thaw effects & de-icing salts !!

Attention: this is also possible in indoor car parks if the salt is carried by the tyres of the cars

potential ingress of rainwater in the pavement structure

• Surface finishing technique

- Internal floor:
 - mostly finished by power floating and trowelling, suitable for vehicles with small, hard wheels
 - Often a shiny polished floor for the ease of cleaning
 - Too slippery for outdoor applications



• Surface regularity

 Internal floors: often very strict requirements because of operational requirements of materials handling equipment used in high racking systems

- Conclusion:
 - o an internal concrete floor is not the same as an external concrete pavement

OIHD-CP compared to concrete roads

Similarities & differences

Shape and dimensions

Concrete roads

• Long & linear

OIHD-CP

- Local all directions
- Often large rectangular surfaces

Design aspects - loadings

Concrete roads

- Traffic = dynamic
- Heavy vehicles are determining thickness

OIHD-CP

- Vehicles –forklifts
- Static loadings
- Airplanes

Design aspects - loadings

- HD-CP: static loadings
 - Surface Linear Point contact
 - Not determining for contact pressure untill 1 N/mm²
 - Case of stacked containers
 - Positioning of loads depending on joint pattern
 - Risk for punching shear failure contact pressures to be limited to 7 N/mm²

Design aspects - loadings

• HD-CP: dynamic loadings

- HGV (up to around 130 kN axle load tyre pressure 0,7 N/mm²)
- Forklifts
- Container handling equipment (reach stacker – straddle carrier - ...)
- Handling of breakgood: sometimes extreme loading (1100 kN of front axle)
- Shock or impact loading: higher dynamic coefficient

Design aspects – Service life

 No structural maintenance during the service life of a pavement. However, the necessary (preventative & curative) maintenance, even though limited, must be done.

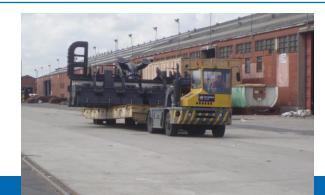
Concrete roads

- Owner= Public Road Authority
- 30 to 40 years

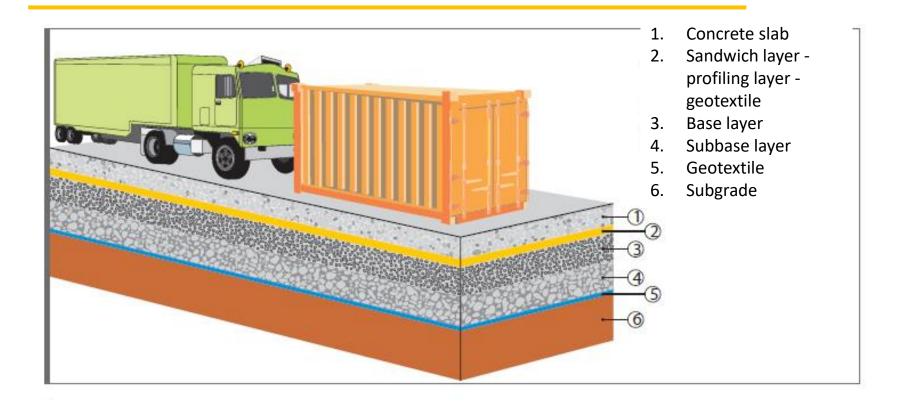
<u>OIHD-CP</u>

- Owner = often private company
- 30 years
- For HD-CP, shorter lifetimes are possible (but minimum 15y)

Pavement type


Concrete roads

- Mainly JPCP
- CRCP, mostly for heavily trafficked roadways
- RCC pavements, mostly for secondary roads


<u>OIHD-CP</u>

- (Almost) Always JPCP
- Exceptional cases in CRCP
 - See further the presentation of J. de Vrieze
- Increasing use of RCC
 - See further the presentation of H. Ceylan

• OI-CP

- in commercial areas, the traffic loading (intensity & frequency) are lower than on highways
- Initial price also plays a role
- Less strict requirements on base and subbase layer, e.g. the use of unbound mixed (concrete + brick) granular layer
- $\,\circ\,$ No sandwich layer or geotextile
- Conventional concrete thickness (18-25 cm)

• HD-CP

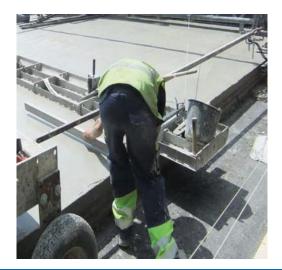
- Very high intensity of the loading but mostly low frequency
 - No calculation on fatigue resistance but use of safety factors on loading and material characteristics + dynamic coefficient
- Importance of base layer + concrete thickness (up to 40 cm)
- $\,\circ\,$ The use of a sandwich layer is to be considered

Sandwich layer

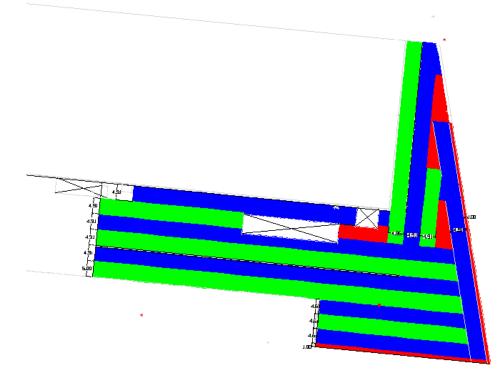
- Levelling the base layer with a material that doesn't resist wash out or erosion (e.g. sand layer) is not allowed
- Asphalt layer
 - Prevents erosion of the base layer and reflective cracking
 - Creates bond between the layers
 - Creates an even and comfortable working platform
- Plastic sheet
 - Prevents loss of water on the bottom of the concrete
 - Reduces stresses in the concrete
 - But creates a sliding plane; joints will be too wide open
- Geotextile (non-woven)
 - Prevents erosion and reflective cracking

Slipform paving

- Roads & OIHD-CP: long enough sections;
- Efficiency strong compaction best quality concrete
- Alternating strips: attention to the concrete quality (consistency-water content) of the even strips



• Slipform paving


- HD-CP: very thick concrete slab
- $\,\circ\,$ Attention to the edge slump
- Sometimes: use of (slipform) paver combined with fixed formwork

• Slipform paving : even for smaller jobs if the will and the skills are there

• Slipform paving : even for smaller jobs if the will and the skills are there

- Manual paving
 - $\,\circ\,$ Fixed formwork: small areas, both for roads and OIHD-CP
 - Compaction by poker vibrators and/or vibrating screed (light or heavy)

• OI-CP: pouring large areas

- Often pumped concrete
- $\,\circ\,$ Sometimes limited to no compaction
- Trowelled surface
- $\circ~$ High efficiency and low costs
- Problem of uncovered and unprotected surface between pouring and compaction and the finishing

• OI-CP: pouring large areas

- Also possible with stiffer concrete (S2-S3)
- Can be compacted, levelled and protected immediately
- See further the presentation by Myron Hillock from Somero Enterprises

- Concrete roads and OIHD-CP have same exposure, leading to the same durability requirements
- Strength requirements are also similar, except for light-duty pavements (low traffic, no exceptional loading). The difference is made in the CP thickness!
- Materials (sand- coarse aggregates cement water admixtures) are mostly the same
 - Possible difference: no requirement on Polished Stone Value for coarse aggregates for OI-CP, in case of low speed traffic
- Basic principles are the same
 - Well-graded aggregates low w/c water content low for given workability – low sand content

- Slipform paving
 - \circ Dry mix S1-S2
 - Highest quality
 - Air entrainment
- Manual paving fixed formworks
 - Workable mix S2-S3:
 - No air entrainment (compatibility with superplasticizer!)
 - Use of sealers to protect surface against scaling from de-icing salts

Manual pouring: too dry concrete – limited compaction

- Large areas pumped concrete
 - Fluid concrete (S4-S5)
 - High dosage of superplasticizer: risk of entrapped air
 - Higher sand content
 - No air entrainer
 - Higher shrinkage
 - $\,\circ\,$ More sensitive to bleeding
 - Lower quality

- Large areas pumped concrete
 - The good, the bad...

• Large areas – pumped concrete

$\,\circ\,$...and the ugly

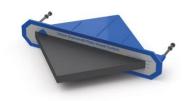
• Influence of compaction on concrete strength (and durability)

	Vibrated concrete			Non-vibrated concrete		
Consis- tency (slump)	Density fresh concrete	Entrapped air	Compressive strength at 7d	Density fresh concrete	Entrapped air	Compressive strength at 7d
70 mm (S2)	2390 kg/m³	0,9 %	33,7 N/mm²	2305 kg/m³	3,7 %	27,3 N/mm² (-19 %)
120 mm (S3)	2390 kg/m³	1,2 %	33,7 N/mm²	2340 kg/m³	3,0 %	26,9 N/mm² (-20 %)
170 mm (S4)	2395 kg/m³	1,0 %	31,2 N/mm²	2355 kg/m³	2,3 %	26,9 N/mm² (-14 %)
210 mm (S4)	2400 kg/m³	0,7 %	32,4 N/mm²	2350 kg/m³	2,0 %	27,8 N/mm² (-14 %)

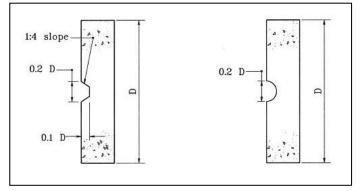
• Mostly the same for roads and OIHD-CP

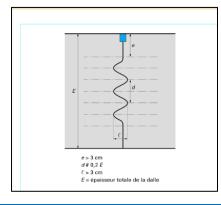
- Dowelled transverse joints
 - $\,\circ\,$ Load transfer: for heavily trafficked roads and HD-CP
 - On baskets
 - Inserted with DBI (dowel bar inserter)

• Dowelled transverse joints

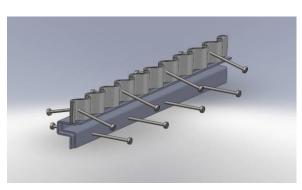

 HD-CP: possibility of two-lift concrete, using the same or a different concrete mix. Dowels are positioned in longitudinal grooves.

- Dowelled joints in both directions
 - $\,\circ\,$ Interesting solution for large rectangular surfaces





- Longitudinal joints
 - Use of tie bars
 - Prevent drifting away of concrete strip
 - Load transfer between adjacent lanes
 - HD-C: sometimes use of
 - Keyway joint (tongue and groove)
 - Sinus joint



- Other types of joints
 - $\,\circ\,$ Some of them coming from the internal concrete floors

Recycled T-shaped PVC used as a construction and contraction joint

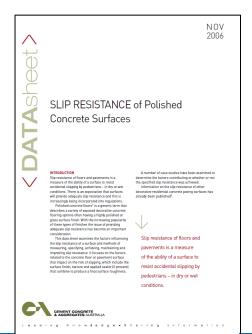
Omega-profile, mainly used for internal concrete floors (photo: Hengelhoef Concrete Joints)

• Depending on the requirements of surface characteristics

- o Evenness
 - Also depending on construction technique
 - Roads: driving comfort, fuel consumption,...
 - OIHD-CP: sometimes specific requirements, mostly comparable to roads
- Skid resistance Friction
 - Roads: high speeds, importance of safety
 - Airfields: important or runway: braking operation after landing!, less for taxiway or apron
 - OI-CP: slip resistance for pedestrians
- Rolling noise
 - Roads: very important, increases with speed
 - OIHD-CP: not really an issue
- Rolling resistance
 - Rarely required, only for roads, related to fuel consumption

Concrete roads

- Exposed aggregate concrete
- Transverse or longitudinal tining
- Transverse brooming
- Grinding NGCS


OIHD-CP

- Brooming
- Trowelling (sometimes followed by brooming)

- Slip resistance of concrete surfaces
 - EN13036-4 Method for measurement of slip/skid resistance of a surface: The pendulum test

- Slip resistance of concrete surfaces
 - Case BE, Kortrijk, Hospital AZ
 Groeninge
 - external pavement in trowelled white concrete
 - Too slippery, many accidents
 - Surface treatment required to roughen the surface

If you want to know more...

- Keep listening
- And check these documents from
 - 0 **BE**
 - \circ ES
 - o NL
 - PIANC
 - o UK
 - o US
 - 0 **ZA**

Thank you for your kind attention