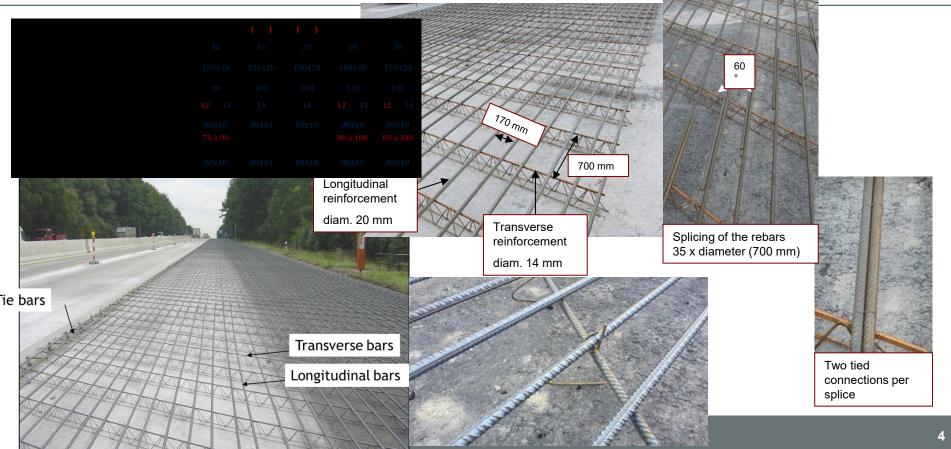


Durable repair and rehabilitation of CRCP

Elia Boonen – Belgian Road Research Centre (BRRC)

- Distresses typical for CRCP (often different from JPCP)
- How to avoid distresses?
 - Design
 - Construction
 - Maintenance = preventive maintenance
- Repair = restorative/curative maintenance
 Rehabilitation reconstruction

Recall – principle of CRCP


Crack formation in CRCP is normal!

- Absence of transverse (contraction) joints
- Shrinkage controlled by longitudinal reinforcement with such percentage (in the cross section) that:
 - Crack opening stays limited: < 0.5 mm</p>
 - > Cracks appear at regular intervals of 0.8 to 1.5 m.
- Reinforcement % = 0.6-0.85 (today: 0.75 in Belgium)
- Transverse reinforcement supporting the longitudinal reinforcement

CRCP – Belgian practice

Typical CRCP Distress Types

- Localized (unwanted) cracking
- Transverse cluster cracking
- Spalling of the cracks
- Steel rupture
- Blow-ups
- Punch-out

Transverse cluster cracking Weak concrete (w/c ratio, construction problems, etc.)

- Spalling of the cracks
 - From minor to severe
 - Transverse and sometimes longitudinal cracks
 - Inadequate tensile strength at the surface (bleeding, ...)
 - Number of spalled cracks increases with crack spacing

- Steel rupture
 - Bad design: stress exceeds tensile strength of the steel
 - Corrosion (construction joints, deicing salts)

Corroded reinforcement bars at transverse construction joint in CRCP

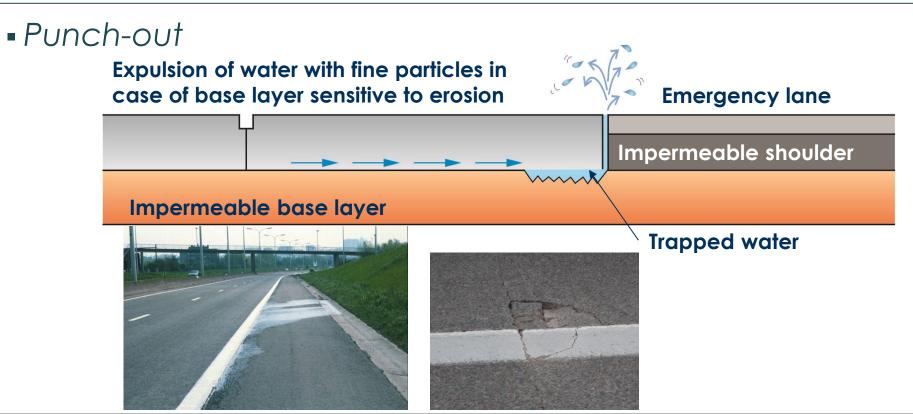
Transverse construction joint in CRCP, with increased risk of water penetration

- "Blow-ups"
 - Bad compaction of the concrete at construction joints; poorly executed or maintained "day joint"
 - Discontinuities by earlier "temporary" repairs

Punch-out = most severe potential problem!

4 essential parameters

- Close spacing of transverse cracks (distance < 50 cm)
- Presence of water between CRCP and base layer
- Base layer sensitive to erosion
- Heavy and intense traffic near the slab edge (edge effect)



Punch-out

- Punch-out
 - Systematic loading of the longitudinal joint will inevitably lead to damage, either by the pumping effect, either by increased stresses
 - True for longitudinal construction joints and longitudinal bending joints

CRCP – crack formation

Control of crack formation

- Reinforcement percentage influences distribution and distance of cracks (in Belgium: 0.70-0.75 %, which leads to an average interdistance of ± 1.0 m)
- Elastic limit of reinforcement steel
- New(er) method: active crack control
 - Length: 40 cm
 - Spacing: 1.20 m
 - Depth: 4 cm
 - Saw cut: as soon as possible, within 24 hours after concreting

Applied on E313, E17, A8, E420, A7, etc.

Preventing distresses by adequate design and construction

- Structural design: type, quality and thickness of the sub-base, base and concrete pavement
- Steel reinforcement: %, spacing, level
- Concrete mix quality
- Compaction
- Curing
- Drainage facilities
- Construction joint
 - Extra compaction with manual vibrating poker
 - Extra reinforcement
 - (Lower w/c or extra cement for first and last batches)

Preventing distresses by adequate design and construction

Construction joint

...or avoiding the problem by working 24 hours a day!

Preventing distresses by adequate design and construction

Punch-outs

- Non erodible base layers; drainage
- Intermediate asphalt course between base and CRCP
- Extra width at the edge of the slow lane (marking at the inside)
- Executing hard shoulder and righthand lane in one phase

(Preventive) Maintenance

- Joint sealing
 - Construction joints
 - Longitudinal joints
 - Between lanes
 - Edge joints (shoulder)
- Crack sealing
 - Only for severely spalled cracks
- Drainage facilities

Repair of CRCP(= curative maintenance)

Full depth repairs

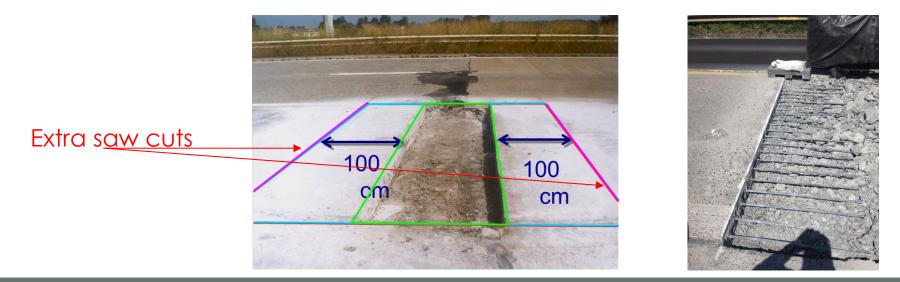
- Partial width: punch-outs, local problems
- Full width: construction joints
- Restore of the continuity of the reinforcement
- Repair of punch-outs
 "permanent patching"!

CRCP Full depth repair

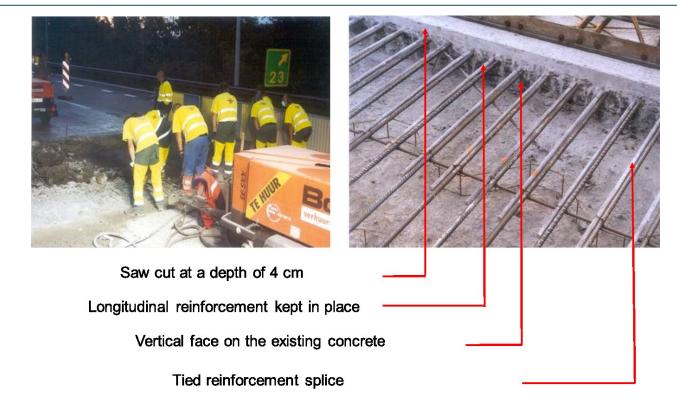
- Saw cuts over full depth, perpendicular to longitudinal joint
- Minimum dimensions: 1.50 m Rectangular shape
- Repair of construction joint:
 - Minimum length 2 m (1 m at each side of joint)
 - Width ≥ slab width (between 2 longitudinal joints)
- Restoration of the base or the intermediate asphalt layer, if needed
- Restoring the reinforcement:
 - 1) By drilling and chemical anchorage of reinforcement
 - 2) By liberating the existing reinforcement

Restoring continuity of reinforcement

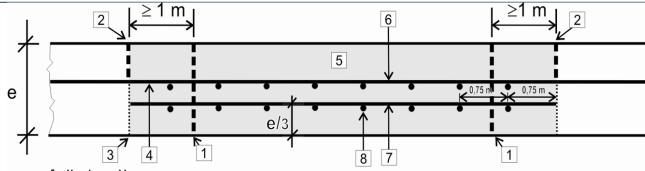
 First method: drilling and chemical anchorage of reinforcement



Restoring continuity of reinforcement (2)


• Second method: liberating existing reinforcement

 2 extra saw cuts, 4-6 cm deep, in order to remove the concrete and make free the existing reinforcement



CRCP full depth repair: restoring reinforcement

CRCP full depth repair (zone < 8 m)

- 1. Saw cut over full depth
- 2. Saw cut with limited depth, ca. 5 cm
- 3. Removal of the concrete (carefully and manually) sound vertical face
- 4. Keeping in place of existing reinforcement steel over 1 m
- 5. Broken up concrete
- 6. New reinforcement steel tied splice over 0.8 -1 m with min. 2 connections per splice
- 7. Extra reinforcement steel in lower third part of the pavement (optionally)
- 8. Transverse reinforcement, perpendicular to road axis

Cores 100 cm² from insulated slabs

28d

4 d

Insulated cubes 15 cm

14 u

24 u

80 · 70 ·

60

50 40 30

10

10 u

R'c in N/mm²

CRCP repair with (ultra) fast-track concrete (UFT)

- Limiting nuisance to road users by reducing the time of execution
 - Well organized worksite
 - Use of (ultra)fast concrete mixes
 - Opening to traffic within 3 days or less
 - Compressive strength on cores or insulated cubes ≥ 40 N/mm²

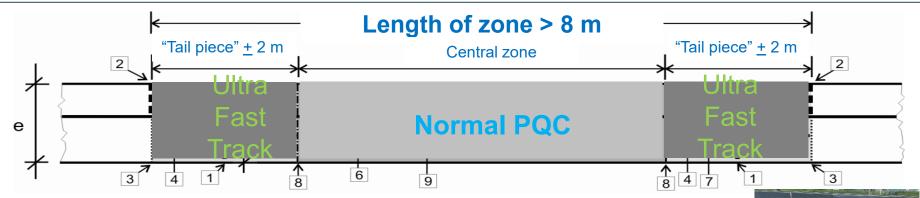
BUT ALSO for CRCP:

- High strength before the cooling of the first night
- 20 N/mm² at an age of 10-12 hours

THEREFORE

- Repair in the morning
- Use of insulation plates to keep the hydration heat

91 d

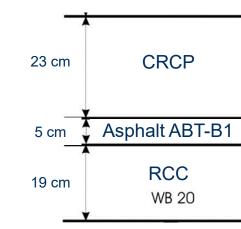

CRCP full depth repair

CRCP full depth repair (zone > 8 m, cf. CCT Qualiroutes)

- 1. Saw cut over full depth
- 2. Saw cut 5 cm
- 3. Removal of concrete sound vertical face
- 4. Keeping in place of the reinforcement steel over 1 m
- 5. Broken up concrete
- 6. New reinforcement steel (central zone + "tail pieces") with tied splice over 1 m
- 7. Extra reinforcement steel ("tail pieces") in lower third part of the pavement
- 8. Vertical face
- 9. Transverse reinforcement

CRCP Full depth repair: case study HALLE 2008





- Problem statement
 - 2002: test track on A10/E40 between Groot-Bijgaarden and Ternat (kmpt. 6.2 – 8.3)
 - CRCP put in place on partially milled asphalt pavement, maintaining part of the existing asphalt + the existing lean concrete base layer
 - After positive evaluation of test track: CRCP applied on entire A10 of Flemish Brabant territory (kmpt. 2.0 – 15.0)
 - However, after some years: punch-out in test track?

Solution

- Core drillings executed in 2017: in part of test track zone, only very thin asphalt layer present on existing lean concrete; in other zones sufficient asphalt thickness
- Reconstruction with following design:
 - 23 cm CRCP
 - 5 cm intermediate asphalt layer (ABT-B)
 - 19 cm roller-compacted concrete base
 - 30 cm subbase layer (type I)

Only emergency and right-hand lane rehabilitated

- Some numbers...
 - Total project: ca. 16 400 m³ concrete
 - 4 400 m³ RCC
 - 3 670 m³ CRCP
 - 1 670 m³ Concrete safety barriers (cast in place)

- Execution
 - Breaking of the concrete pavement

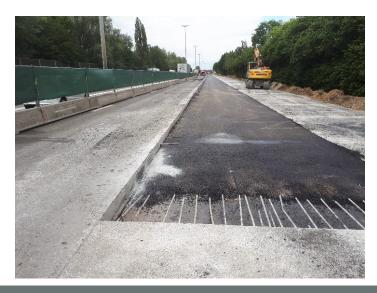
- Execution
 - Cold milling of existing asphalt layer

ExecutionPutting in place of RCC

Execution

Intermediate asphalt layer

Execution


 Construction of concrete pavement and safety barriers ("New Jerseys")

Points of attention during construction

Anchorage with existing structure

Points of attention – construction / "day joint"

Dr. Eng. Elia Boonen Researcher Belgian Road Research Centre +32 2 766 03 41 e.boonen@brrc.be www.brrc.be