

CURRENT U.S. PRACTICES FOR SUCCESSFUL DESIGN AND CONSTRUCTION OF CONCRETE OVERLAYS

EUPAVE Webinar Presentation By:

Mark B. Snyder, Ph.D., P.E. – PERC, LLC

Engineering consultant to the

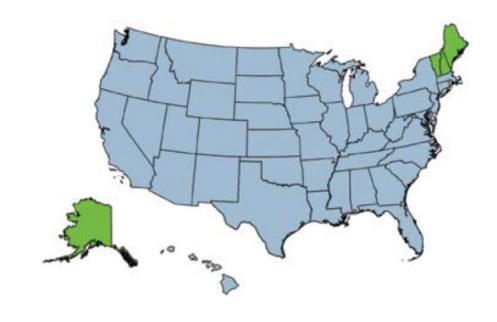
U.S. National Concrete Pavement Technology Center

American Concrete Pavement Association

WHY CONCRETE OVERLAYS?

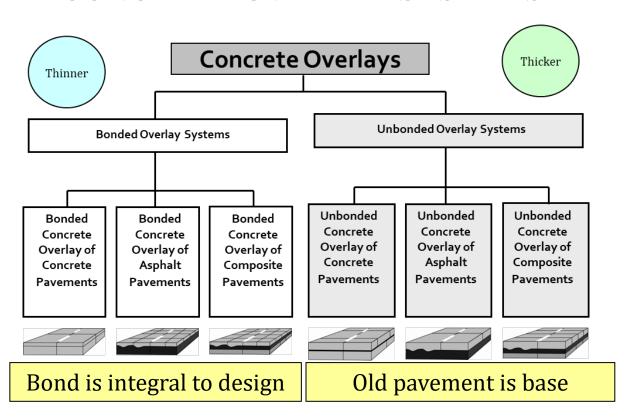
BENEFITS OF CONCRETE OVERLAYS

- Can be applied to a wide variety of existing pavements exhibiting a range of performance issues
- Can be constructed rapidly and with effective construction traffic management
- Most importantly: cost-effective long service life


Can be designed to achieve a service life of 40 years (or more)!

CONCRETE OVERLAYS

INTRODUCTION

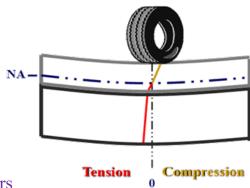

• >1,263 concrete overlays in the U.S., dating from **1901** through present (including >410 since year 2000)

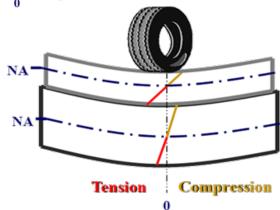
 Concrete overlays have been successfully constructed in at least 49 different states and Canadian provinces

Source: ACPA's National Concrete Overlay Explorer)

CONCRETE OVERLAY SYSTEMS

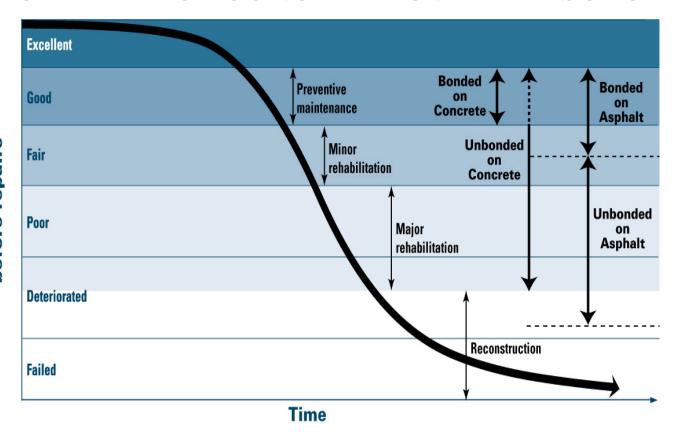
BONDED OVERLAYS VS. UNBONDED OVERLAYS


DESIGN <u>ASSUMPTIONS</u> AND CONSTRUCTION REQUIREMENTS


Bonded:

- Bond between layers is assumed in design
- Bond *must* be achieved during construction
- Designed as a monolithic structure

Unbonded:

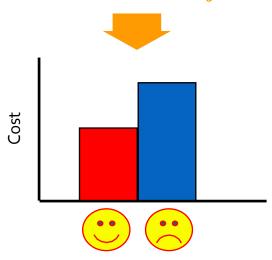

- In design, <u>assume</u> there is no bond between layers
 - Bond can cause pavement distress to reflect through overlay
- Usually place separation/isolation layer on concrete pavement during construction
- No effort to debond from asphalt pavement during construction
 - Any bond with asphalt makes the design conservative
- Designed like a new pavement on stiff foundation

APPLICABILITY OF CONCRETE OVERLAY SOLUTIONS

TYPICAL CONCRETE OVERLAY SERVICE LIVES

Concrete Overlay Type	Typical Life
Bonded on Concrete	15-25 years
Unbonded on Concrete	20-30 years
Bonded on Asphal/Composite	5-15 years
Unbonded on Asphalt/Composite	29-30 years

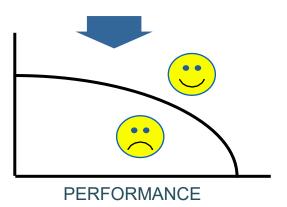
Based on FHWA's "Portland Cement Concrete Overlays – State of the Technology Synthesis" (FHWA-IF-02-045)

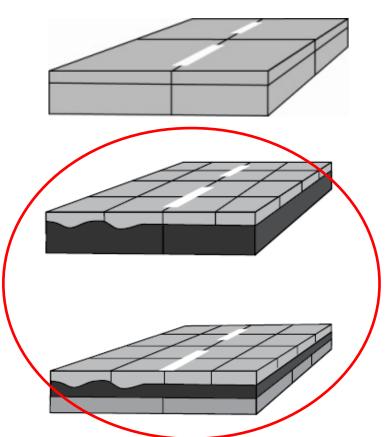

Overlay service life is dependent upon:

•Sound overlay structural design - compatible with expected traffic and site conditions •Good construction practices

THE PRINCIPAL FACTORS OF CONCRETE (OVERLAY) PAVEMENT DESIGN

- Geometrics
- Thickness
- Joint Systems
- Materials


Most Often Influence Cost& Selection of Projects


THE PRINCIPAL FACTORS OF CONCRETE (OVERLAY) PAVEMENT DESIGN

- Geometrics
- Thickness
- Joint Systems
- Materials

Most Often Influence Real-world Performance

BONDED CONCRETE OVERLAYS

- Concrete resurfacing of existing asphalt, concrete or composite pavement
- <u>Designed and constructed with bond</u> between concrete overlay and layer below
- Typically relatively thin overlays (50 150 mm)
- Panel size:
 - Match joints over concrete
 - Typically small panels over asphalt (1–2m square)

BONDED CONCRETE OVERLAY OF ASPHALT-SURFACED PAVEMENT

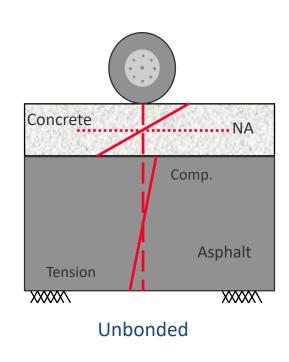
Existing pavement condition:

- Fair or better structure
 - No asphalt stripping
 - \geq 75mm asphalt after milling
- Surface distress can be present
 - Rutting is OK
 - Non-load cracking is OK

Typical applications:

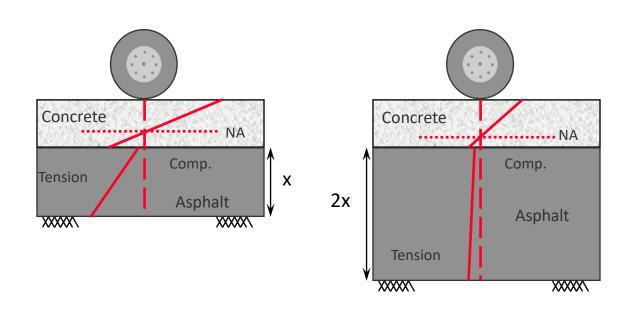
- Eliminate surface defects
- Improve friction, ride quality
- Increase structural capacity

Typical thickness: 50 - 150mm

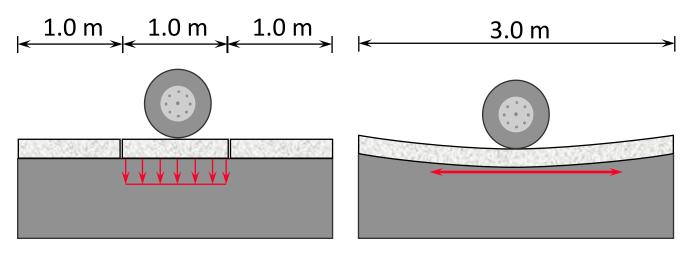


HOW DO BONDED CONCRETE OVERLAYS OF ASPHALT WORK?

- 1. Concrete bonds to asphalt
 - Lowers neutral bending axis
 - Decreases tensile stress in PCC
- 2. Small panels
 - Reduces shrinkage, curl/warp and load-related stresses
- 3. Fiber reinforcing can be used to improve concrete toughness

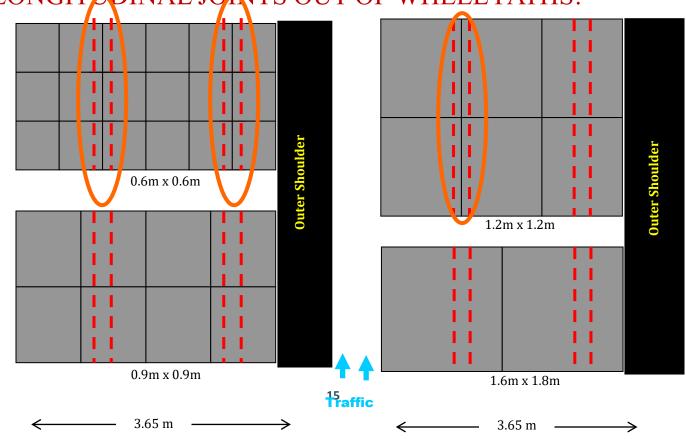


EFFECT OF OVERLAY BOND ON EDGE STRESS



EFFECT OF ASPHALT THICKNESS ON EDGE STRESS

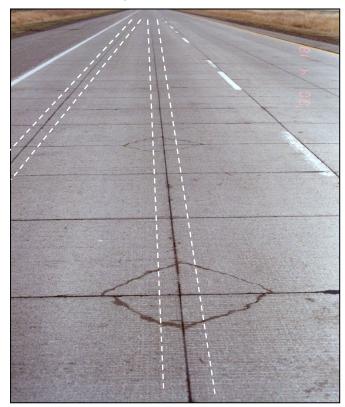
EFFECTS OF PANEL SIZE ON LOAD-RELATED STRESS



Short Slabs Deflect Very little flexural stress

Standard Slabs Bend Higher flexural stress

BCOA JOINT LAYOUT


KEEP LONGITUDINAL JOINTS OUT OF WHEEL PATHS!

MnROAD BCOA PERFORMANCE

(After 5 yrs service, ~5M 80-kN ESALs)

Design (Thickness – Length x Width)	Panels Cracked (%)	Corner Cracks
100mm - 1.2m x 1.2m	5	6
75mm – 1.2m x 1.2m	40	165
75mm – 1.5m x 1.8m	8	17
150mm - 1.5m x 1.8m	0	0
150mm – 3m x 3.7m – No dowels	13	0
150mm – 3m x 3.7m – Dowels	3	0

1.2m x 1.2m Panels: Corner Breaks due to Wheel Loadings

BCOA JOINT LAYOUT

KEEP LONGITUDINAL JOINTS OUT OF WHEEL PATHS!

75mm PCC over 250mm AC, 1.2m x 1.2m panels, 6 yrs (~6M ESALs) 75mm PCC over 250mm AC, 1.8m x 1.8m panels, 6 yrs (~6M ESALs)

BEST BCOA JOINTING PRACTICES

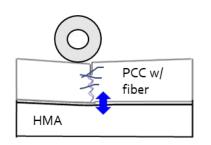
Maximum Panel Size = 18-24 x Slab Thickness

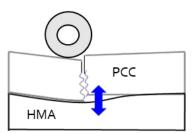
- For overlay thickness <75mm, typically use 1m sq.
- For overlay thickness = 75 150mm, typically use 2m sq.

Usually No Dowels

- Small panel size increases effectiveness of aggregate interlock
- Thickness (dowel cover) concerns
 - 25mm diameter dowels have been used in 150mm thick concrete overlays with *mixed results*
 - Longitudinal joint ties have been used successfully when thickness > 4 in.
 - Structural fibers may be effective "ties" between lanes

Longitudinal Joints Should be "Tied" if Possible


- Small tie bars have been used successfully when overlay thickness > 100mm
- Structural fibers may effectively "tie" lanes and prevent excessive joint opening


BCOA STRUCTURAL FIBER CONSIDERATIONS

Does not increase concrete strength Increases toughness, post-crack integrity

Residual strength ratio = 24%

Crimped synthetic: Enduro 600

BCOA DESIGN PROCEDURES:

- BCOA-ME
- AASHTO PavementME SJPCP Module

(Last site update Jan. 2016/Last guide update April 2015)

The bonded concrete overlay of asphalt mechanistic-empirical design procedure (BCOA-ME) was developed at the University of Pittsburgh under the FHMA Pooled Fund Study TPF 5-165. This pavement structure has been referred to as thin and ultra-thin whitetopping. This site is a repository for all information relating to the BCOA-ME. The information has been sorted based on its intended use and can be retrieved by clicking on the appropriate tab below. The BCOA-ME can be run directly from this site by clicking on the "Design Guide" tab below.

BCOA-ME Design

	DCCA-IIIL DC	Sigii		
Instruction:				
Select from drop-down list;	Enter data;	Enter data or use calculation.		
(Please enable the Macros and th	e Internet Explorer (not man	datory) to run the spi	readsheet.)	
General Information				
Latitude (degree): Longitude (degree):		44.5	Geographic	
		93.1	Information	
Elevation (ft):		874		
Estimated Design Lane ESALs:		200,000	ESALs Calculator	
Maximum Allowable Percent Slab	s Cracked (%):	25%		
Desired Reliability against Slab C	racking (%):	85%		
Climate			_	
AMDAT Region ID		5		
Sunshine Zone		2		
Existing Structure			_	
Post-milling HMA Thickness (in):		6		
HMA Condition:		Adequate	k-value Calculator	
Composite Modulus of Subgrade	Reaction, k-value (psi/in):	250	K-value Calculator	
Does the existing HMA pavement	have temperature cracks?	Yes		
PCC Overlay				
Average 28-day Flexural Strength (psi):		650	Epcc Calculator	
Estimated PCC Elastic Modulus (psi):	3,930,000	CTE Calculator	
Coefficient of Thermal Expansion	(10 ⁻⁶ in/°F/in)	5.5	CTE Calculator	
Fiber Type:		No Fibers	1	
Fiber Content(lb/cu yd) (Only used	when a fiber type is selecte	d 0	1	
Joint Design			-	
Joint Spacing (ft):		6		
			_	

Performance Analysis

Calculated PCC Overlay Thickness (in): 3.26

Design PCC Overlay Thickness (in): 3.5

Is there potential for reflective cracking? Yes

Solved.

Calculate Design

CONSTRUCTION STEPS FOR BCOA

- Mill and clean surface.
- Pre-overlay repairs, if required.
- Set forms for roller screed.
- Prepare surface.
- Place concrete.
- Texture pavement.
- Apply curing compound.
- Saw cut joints.
- Monitor strength gain (maturity).

BCOA SURFACE PREPARATION

MILLING

Mill AC Surface (optional)

- Remove rutting
- Restore profile (remove high spots)
- Enhance bond
- Minimum 75mm AC remaining after milling

Can place without milling if rutting <50mm

• Results in variable overlay thickness

BCOA SURFACE PREPARATION

MILLING

Cautions!

- Minimize milling to retain structural support of overlay
- Make major grade corrections by varying overlay thickness

Excessive milling of existing asphalt

BCOA SURFACE PREPARATION

CLEANING THE SURFACE

Power-broom

Remove loose material

 Allow inspection to determine need for pre-overlay repairs

BCOA

PRE-OVERLAY REPAIRS

Primary purpose: restore uniform support

- Repair potholes, localized areas of severe fatigue cracking
- Preferred material: concrete (improved bond) vs. asphalt
- Can fill cracks, but usually not

BCOA

PRE-PAVING (FINAL SURFACE CLEANING)

Power Brooming

Air Blasting

Water Blasting

BCOA

BCOA - FINISHING

Need for finishing is minimized by:

- Selecting a workable mix
- Operating the paving equipment properly

BCOA – SURFACE TEXTURING

BCOA CURING

Keys for success:

- Apply when surface sheen is gone
- High application rate (0.27 0.36 liters/m²)
- Cover all exposed surfaces (including sides)
 - Automated equipment provides most reliable coverage
 - Check spray nozzles frequently
- Minimum cure time 72 96 hrs

BCOA JOINT SAWING

Saw cut depth = D/3 (typical)

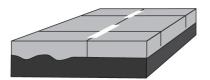
- Less for early-entry saws
- Adjust cut depth for slab thickness (especially for variable thickness overlays)

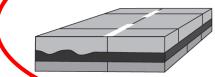
Timely sawing is critical!

• More joints = need for more equipment, operators and spare parts!

BCOA JOINT SEALING

- Recommended for BCOA to prevent loss of bond!
- Minimize infiltration of water and incompressible material




UNBONDED CONCRETE OVERLAYS

Unbonded Concrete Overlays of Asphalt Pavements—previously called conventional whitetopping—

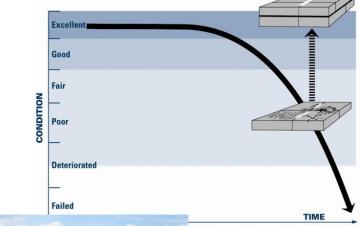
Unbonded Concrete Overlays of Composite Pavements

UNBONDED CONCRETE OVERLAYS OF CONCRETE

- Concrete resurfacing of existing concrete or composite pavement
- Designed and constructed with separation interlayer between two concrete layers and assuming no bond
- Thicker overlays (≥125 mm)
- Panel size:
 - $1.8 \text{m x } 1.8 \text{m for D} \le 150 \text{mm}$
 - Full-lane width for D>150mm

UNBONDED CONCRETE OVERLAY OF

CONCRETE PAVEMENT


Existing pavement condition:

- Poor or better structure
 - Repairs required only where structural integrity is lost at isolated spots

Typical applications:

- Use to restore structural capacity and increase pavement life equal to new full-depth pavement
- Improve friction, ride quality, noise

Typical thickness: >125mm

Missouri county road, pre-overlay condition, no repairs prior to 125mm unbonded overlay (2008)

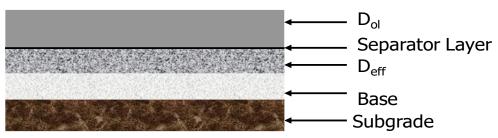
UBOL DESIGN PROCEDURES:

- AASHTO (1993)
- AASHTO PavementME
- UBOL Design version 1.0

1993 AASHTO Unbonded Concrete on Concrete / Composite

Slab Thickness Design

Unbonded overlay design equation:

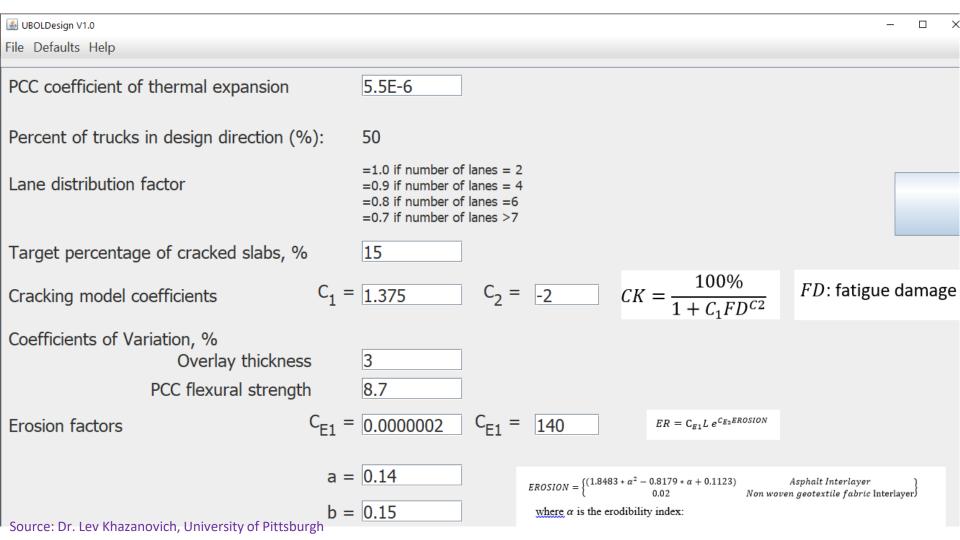

$$D_{ol} = \sqrt{D_f^2 - D_{eff}^2}$$

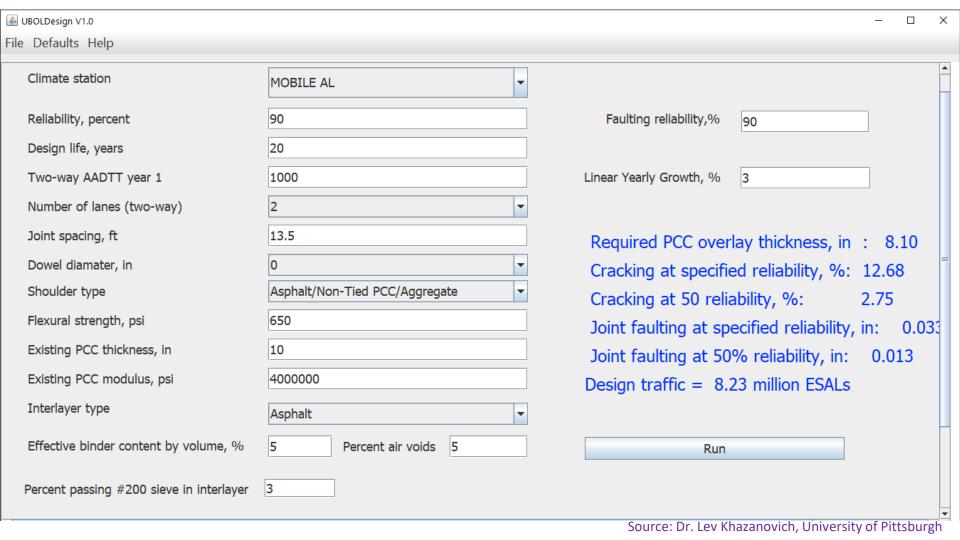
where:

 D_{ol} = Required PCC overlay thickness

 D_{f} = Thickness of new PCC pavement for design conditions

 D_{eff}^{-} Effective thickness of existing PCC

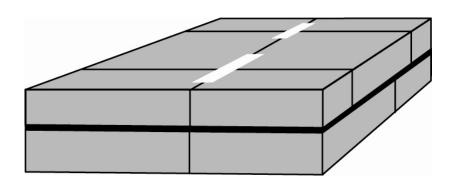



AASHTOWare PavementME-Design for Unbonded Concrete Overlays

- Essentially same design process and performance models as for new pavement design.
- Determine basic design input parameters (traffic, soil conditions, material properties, etc.).
- Develop preliminary designs (thickness, base designs, joint spacing, and other design features).
- Use software to evaluate predicted performance over the analysis period (e.g., 50 years).
- Determine life-cycle activity profiles ("what" rehabilitation activities to perform and "when").
- Calculate the Initial and Life Cycle Costs for each pavement design over the analysis period.
- Evaluate designs and modify as needed to develop a pavement section that meets or exceeds the required initial performance period and has the lowest life cycle cost.

UBOL Design Version 1.0

- New mechanistic-empirical unbonded overlay design procedure.
- Developed at University of Pittsburgh under pooled-fund study by several state highway agencies.
- Structural analysis simulates FEM models using neural network for quick, inexpensive results.
- Performance models are based on data obtained from unbonded concrete overlays throughout the U.S.
- Can be used to evaluate trial designs or to develop designs based on input performance parameters.
- Public domain ("free") software.


UNBONDED OVERLAYS OF CONCRETE PAVEMENT

UNBONDED OVERLAYS OF CONCRETE PAVEMENT

KEYS TO SUCCESS

- Full-depth repairs are required only where structural integrity is lost at isolated spots.
- Separator layer to isolate overlay from underlying pavement minimize reflective cracking.
 - 25-50 mm dense- or open-graded asphalt
 - Drainage or anti-strip for heavy traffic
 - Geotextile fabric

- Shorter joint spacing helps minimize curling and warping stresses.
 - Transverse joints at 18-24 times thickness to maximum of ~5m
 - No need to match joints with those of the underlying concrete pavement.

UNBONDED CONCRETE OVERLAYS OF CONCRETE

SEPARATION LAYER OPTIONS

UNBONDED CONCRETE OVERLAY

GEOTEXTILE INTERLAYER PROPERTIES

Property	Requirement (95% PWL)
Fabric Type (EN 13249 Annex F)	 Non-woven, needle-punched geotextile Uniform color
Mass per unit area (ISO 9864)	≥ 450 g/m ² ≥ 500 g/m ² ≤550 g/m ²
Thickness under pressure (ISO 9863-1)	At 2 kPa: ≥ 3.0mm At 20 kPa: ≥ 2.5mm At 200 kPa: ≥ 0.1mm
Tensile strength (ISO 10319)	≥ 10 kN/m
Maximum elongation (ISO 10319)	≤ 130% (≤ 60% recommended as best practice)
Water permeability in normal direction under pressure (ISO 12958)	≥ 1.0×10 ⁻⁴ m/s) [under pressure of 20 kPa]
Alkali resistance (EN 13249)	≥ 96% Polypropylene/Polyethylene

GEOTEXTILE INTERLAYER COLOR

- Black absorbs UV energy
- Requires sprinkling to reduce heat in warm weather conditions

White - reflects UV energy Lower surface temperature in warm weather conditions

GEOTEXTILE FABRIC INTERLAYER

INSTALLATION

- Sweep surface prior to placement
- Avoid wrinkles
- Overlap 100-200mm (similar to roofing shingles)
 - Avoid 3 layer thickness
- Free edge extend beyond edge of new concrete and into drainage layer by 100mm or more.

GEOTEXTILE FABRIC INTERLAYER

INSTALLATION

Secure to underlying layer

• Nails and washers (~2m centers)

Adhesive

GEOTEXTILE FABRIC INTERLAYER

PRE-PAVING/PAVING

- Dampen fabric before paving.
- Minimize trafficking on geotextile avoid turning movements

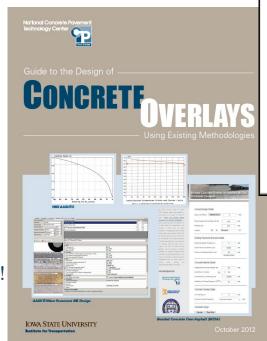
UNBONDED CONCRETE OVERLAYS

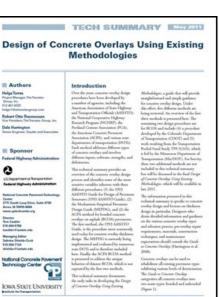
PAVING MIXTURES, FINISHING, CURING AND JOINTING

- Conventional vs. Rapid Early Strength
- Fiber-reinforcement?
- Conventional Finishing
- Conventional Texturing
- Conventional Curing
- Jointing
 - Conventional panel sizes (sometimes smaller)
 - Sometimes offset transverse joints, but not necessary

SUMMARY/CLOSURE

- Concrete overlays offer a broad range of treatments for existing concrete, asphalt and composite pavements.
- Well-designed, well-constructed concrete overlays can provide 40 or more years of low-maintenance service life.


GUIDE FOR DESIGN OF CONCRETE OVERLAYS


Background of recommended overlay design techniques

- 1992 AASHTO Overlay procedure
- Pavement-ME/MEPDG
- ACPA Bonded Concrete Overlay of Asphalt pavements
- (BCOA-ME background on host website)

Detailed examples of how to use the existing design methodology

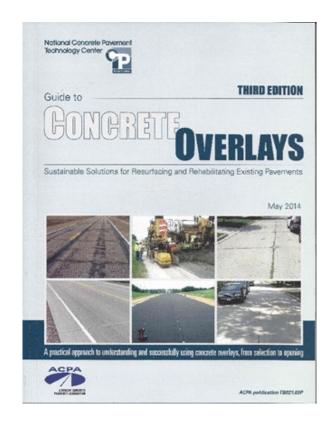
Learn by example – then apply for your situation!

Available online: http://www.cptechcenter.org/

Arres, US SOCIO-0554

Managing Editor Sabrina Shields-Con

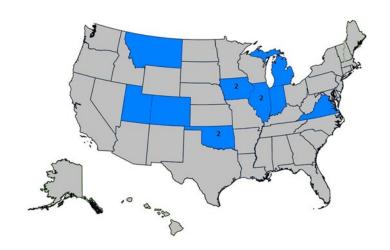
National Concrete Pavement

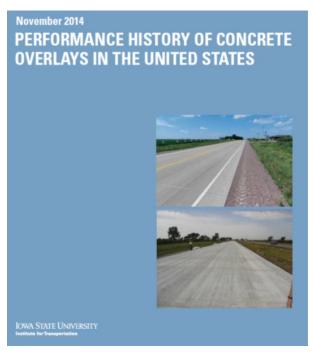

IOWA STATE UNIVERSITY

NYS-294-7124

CONCRETE OVERLAY GUIDE, 3RD EDITION

145 pages, including:


- Overview of Overlay Families
- Overlay types and uses
- Six Overlay Summaries
- Evaluations & Selections
- Design Section
- Miscellaneous Design Details
- Overlay Materials Section
- Work Zones under Traffic
- Key Points for Overlay Construction
- Accelerated Construction
- Project & Specifications Considerations



https://intrans.iastate.edu/app/uploads/sites/7/2018/08/Overlays_3rd_edition.pdf

PERFORMANCE HISTORY OF CONCRETE OVERLAYS IN U.S.

Highlights twelve concrete overlay projects across the U.S.

https://intrans.iastate.edu/app/uploads/2018/10/Performance-History_FHWA-acknowledgment_tagged-1.pdf

NATIONAL CONCRETE OVERLAY EXPLORER DATABASE

NATIONAL CONCRETE OVERLAY EXPLORER DATABASE – EXAMPLE DATASET

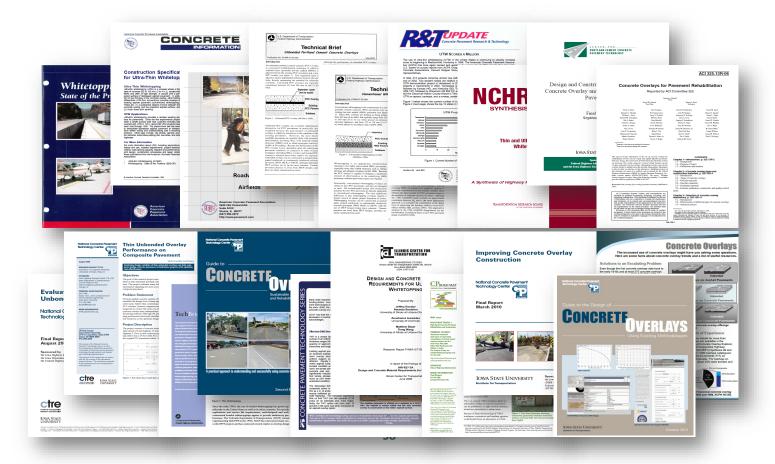
▼ The National Concrete Overlay Explorer

Rt. I-35 Clay County Missouri Type of Overlay: Unbonded on Concrete Application: Highway Constructed in 2010 in Kearney, MO (Clay County) Contractor: Ideker, Inc. Engineer: MoDOT Owner: MoDOT

New Construction Details Thickness: 8 in. Project Size: 386415 square yards Joint Spacing: 15 ft Doweled Joints: Yes Interlayer Matieral: Geotextile and Thickness: .25 Traffic: 34000 Integral Widening Constructed with Overlay: No Truck Traffic: 34% Reinforcing: NA Existing Pavement Type: Composite

Current Conditions Still in Service: Yes Current Condition: Excellent Condition Last Condition Rating: Novembber 2010

Photos



Local ACPA Chapter or State Paving Associations: Missouri/Kansas Chapter Inc. - ACPA

MANY OTHER RESOURCES:

ACKNOWLEDGMENTS

- Dr. Shiraz Tayabji (Fugro Consultants, Inc.)
- ▶ Mr. Kurt Smith (Applied Pavement Technology, Inc.)
- ▶ U.S. National Concrete Pavement Technology Program (CPTP)
- ▶ Mr. Dale Harrington (National Center for Concrete Pavement Technology)
- ▶ Mr. Gary Fick (Transtec, Inc.)
- ▶ Dr. Julie Vandenbossche (University of Pittsburgh)
- ▶ Mr. Tom Burnham (Minnesota DOT)
- ▶ Dr. Lev Khazanovich (University of Pittsburgh)
- ▶ American Concrete Pavement Association

Tank You For Your Time and Attention

MARK B. SNYDER

PAVEMENT ENGINEERING AND RESEARCH CONSULTANTS (PERC), LLC

Phone: +1-412-979-8332

Email: mbsnyder2@gmail.com;

perc2004@gmail.com