

CO₂-reduction – options for cement

EUPAVE webinar 23 June 2021

Edwin Vermeulen

Topics presentation

- Raw materials
- History
- Reducing content Portland cement clinker in cement
- Alternative binders
- Carbon capture
- 'Quick wins'

World production materials

Source: Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement- based materials industry, Karen L. Scrivener, Vanderley M. John, Ellis M. Gartner, 2016

Embodied emissions UK

World production cement

Source: Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement- based materials industry, Karen L. Scrivener, Vanderley M. John, Ellis M. Gartner, 2016

Limestone

World cement production 2015:

- ~ 4,6 billion ton cement =
- ~ 4,3 billion ton limestone =
- ~ 1,6 billion m³ limestone

Alternatives have to be abundantly available!

Critical raw materials

Of the critical materials for Europe, 90% have to be imported, mainly from China.

countries accounting for largest share of global supply

Source: European Commission, Study on the EU's list of Critical Raw Materials (2020)

Scarce materials

Moderately scarce (EGR exhaustion time between 100 and 1000 years after 2050)

Arsenic	400
Bismuth	200
Boron	200
Cadmium	500
Chromium	200
Copper	100
Iron	300
Lead	300
Nickel	300
Silver	200
Tin	200
Tungsten	300

(3 % growth until 2050, then flat)

Not scarce (EGR exhaustion time > 1000 years after 2050)

Aluminum	20,000
Barium	1000
Beryllium	200,000
Cobalt	2000
Gallium	1,000,000
Germanium	200,000
Indium	10,000
Lithium	9000
Magnesium	30,000
Manganese	2000
Mercury	400,000
Niobium	2000
Platinum Group Metals	1000
Rare Earth Metals	20,000
Rare Earth Metals	20,000
Selenium	300,000
Tantalum Thallium Titanium Uranium Vanadium Zirconium	10,000 20,000 1,000,000 10,000 2000 20,000 20,000 2000

Source: Mineral resources: Geological scarcity, market price trends, and future generations, Elsevier 2016

Calcium ∞ Silicium ∞

Raw materials for cement are unlimited and regional available

Limestone: skeletons of plankton and others (~ 5 billion tons/year)

Refuse is (not) an option

Adobe (since ~ 8000 BC)

Roman concrete

 \mathbf{r}

Slaked lime + pozzolan

Hydraulic lime

Next to CaCO₃ also CSH-gel

Clinker minerals

Roadmap CO2-reduction

Source: Cementing the European Green Deal, CEMBUREAU, 2020

Clinker substitution

Source: Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement- based materials industry, Karen L. Scrivener, Vanderley M. John, Ellis M. Gartner, 2016

Availability raw materials

Requirements hydraulic cement

- Cement particles must be able to dissolve in water
- Hydrates must have a larger volume than dissolving cement
- Hydrates must be poorly water soluble

Calcium silicates Calcium aluminates Calcium sulfo-aluminates

Belite-rich Portland cement (HBC)

	C ₃ S	C ₂ S
HBC	24.7 %	53.0 %
PC	52.4 %	24.5 %

Three Gorges Dam (1994-2006) 2.7 million m³ concrete

About 10 % lower CO₂ emissions. Very slow strength development.
Used mainly in China in specific applications.

Belite calcium sulfo-aluminate cement

- Approximately 25 % lower CO₂ emissions (compared to CEM I).
- Contains, in addition to belite (C₂S), approx. 35 % ye'elimite (C₄A₃\$).
- Rapid strength development through hydration of ye'elimite (ettringite formation).
- Expensive aluminium-rich raw materials required.
- Can, in principle, replace Portland cement clinker (pH ~ 10.5 is on the low side).
- Production process comparable to Portland cement. Raw materials: limestone, bauxite (or secondary aluminium source such as fly ash) and (large amounts of) CaSO₄.

Solidia cement (Wollastonite)

- Mainly CS (wollastonite) instead of C₃S.
- Lower reaction temp. (1250 1350 °C instead of 1450 °C).
- Same raw materials and furnace.
- Reaction with CO₂ instead of water (water as medium).
- Fast strength development but curing in CO₂ chamber.
- Limited thicknesses (for CO₂ penetration).
- No high pH pore solution -> not suitable for reinforced concrete.
- CO₂-saving during production (~30 % compared to CEM I) and CO₂-absorption during curing (~30 % compared to CEM I).

Solidia cement

Celitement (calcium hydrosilicate cement)

Celitement

- Predominantly CS·½H₂O instead of C₃S
- Lower reaction temperature (1000 °C instead of 1450 °C)
- Same raw materials
- Production in a (limestone) oven, autoclave with steam (CSH) and then 'activation' grinding (- 0.5 H₂O).
- Reaction with water. Can be processed as Portland cement.
- No high pH pore water -> not yet suitable for reinforced concrete.
- CO₂-saving during production (~ 50 % compared to CEM I).

A 24-storey building built with alkaliactivated slag cement concrete on Berezinsa street 2, city of Lipetsk, Russia, 1994.

2015

Cycle path (Croeselaan, Utrecht) Construction: spring 2018 Picture: February 2021 Cycle path (Aadorpweg, Almelo) Construction: autumn 2019 Picture: February 2021

- Large-scale applications already in the 1950s in Belgium and in the 1960s in the Soviet Union. Research since 1930.
- No environmental benefit from the use of slag and fly ash (already used in cement and concrete), but environmental loss due to additional activators.
- Environmental benefit possible when using other materials like calcined clay.

Carbon capture

Conclusions

- Earth's crust composition and chemistry 'inevitably' lead to Portland cement clinker.
- There is no single alternative that can replace Portland cement clinker in terms of availability and quality.
- A combination of measures is needed to achieve significant CO₂ reduction.
- CSA-belite cement, Solidia cement and especially carbon capture are promising but still require research and time.

Quick wins

- Use low-clinker cements (but not too low because of frost resistance)
- Optimize grain packing.
- Use alternatives such as Carbstone (volumes are limited).
- Use coarser gravel

Questions?